
Analytical Study of Optical Wavefront
Aberrations Using Maple

Marc A. Murison
U.S. Naval Observatory

Astronomical Applications Dept.
3450 Massachusetts Ave., NW

Washington, DC 20392
murison@riemann.usno.navy.mil

24 September 1996

1. Introduction.
Modern high-precision optical systems, such as space astrometric interferometers (e.g.
Reasenberg et al. 1996, Loiseau and Malbet 1996, Lindegren and Perryman 1996), can require

optical path tolerances in the sub-nanometer (= 1 nm 10
()−9

m) to picometer (

 = 1 pm 10
()−12

m) regimes over total path lengths on the order 10 m. Such tolerances place
extreme requirements on optical analysis programs. Two questions are of paramount
importance: 1) to which specific perturbations is a system most sensitive? and 2) are there
couplings between different perturbations that produce high sensitivities (i.e., are there strong
correlations between perturbation parameters)? AESOP can be, and has been (Murison, 1993),
used to fully answer these questions, as well as to develop physical intuition in the picometer
OPD regime.

A common optical subsystem employed in astronomical interferometers is a beam compressor,
used to convert a large aperture input beam (starlight) to a narrow output beam (~1 cm) suitable
for combining with another such beam to produce interference fringes of sufficient visibility. A
typical beam compressor consists of a pair of confocal paraboloidal mirrors, as sketched in
Figure 1. If perfectly aligned, a flat input wavefront results in a radially compressed flat output
wavefront. Misalignment analysis of even such a simple system as this generally requires
resorting to numerical programs. Usually, such programs are ill-suited for studies involving
both misalignment parameter variation and aperture-averaged optical path difference (OPD)
determination, especially in the pm regime. The need for picometer OPD tolerances is a
relatively recent development, driven by ever more demanding sciece objectives. Such
tolerance requirements will likely become more common, and the lack of adequate analysis
tools will correspondingly be felt more strongly.

To develop a physical understanding of alignment sensitivities, one would much prefer an
analytical rather than a numerical description of the output wavefront as a function of the
misalignment parameters. Unfortunately, an analytical wavefront description of misaligned
optical systems as simple as a beam compressor, or even a single focussing optic, can be too
complex to attempt by hand in the kind of detail required for sensitivity studies (Noecker et al.
1993). However, computer algebra systems such as Maple have advanced to such a state of
capability and sophistication that, coupled with the processing power of modern computers,
complete analytical descriptions are, as we shall see, now becoming possible. This paper
describes AESOP (An Extensible Symbolic Optics Package), an analytical ray tracing package
written in the Maple programming language.

AESOP was developed to support the analysis effort involved in determining critical
sensitivities to optic misalignments in a proposed dual interferometric astrometric telescope,
POINTS (Reasenberg et al. 1988, 1995a, 1995b, 1996). POINTS consists of a pair of
independent Michelson stellar interferometers and a laser metrology system that measures both
the critical starlight paths and the angle between the two interferometer baselines. The nominal
design has baselines of 2 m, telescope apertures of 35 cm, and observes target stars separated by

roughly 90 degrees. One of the distinguishing features of POINTS is that it employs
holographic optical elements (HOEs) to accomplish picometer metrology over the full aperture
of the starlight optical path. See the Reasenberg et al. references for a full description of the
instrument, its capabilities, and the astrophysical, astrometric, and planet-finding science that
POINTS would significantly impact. Also, information can be found on the POINTS web
pages at http://www-cfa.harvard.edu/~reasen/points.html.

A key analysis problem regarding the POINTS interferometers is the determination of optical
path length errors as a function of various optical element misalignments. The path length error
budget in a precision system such as this is only several tens of picometers. With such a tight
error budget, it is imperative to determine which perturbations lead to large path length errors.
At the pm level, often we cannot trust our optical intuition in determining misalignment
sensitivities. In such cases, we must rely on numerical analysis to an uncomfortable degree,
lacking reliable independent checks on the numerical results. AESOP was created in part to fill
this niche. In the case of POINTS, a numerical program called RayTrace (see Murison (1993)
for a description) was written specifically to perform ultra-high precision, sub-picometer OPD
variation analyses. AESOP was developed in parallel with RayTrace. The two analysis
approaches -- numerical and analytic -- are completely independent and therefore serve as
excellent checks upon one another.

AESOP traces an input ray through a misaligned optical system and produces an analytic
description of the output ray as a function of the system parameters, the misalignment
parameters, and the input ray position and direction. A crucial diagnostic is the
aperture-averaged OPD variation. The physical principles involved are quite simple, since
AESOP takes a classical geometric optics approach. At a given reflecting surface, all that is
required is to calculate the reflected ray direction and the accumulated optical path up to that
intersection point. Similarly, at a refracting surface we use Snell's law to calculate the refracted
ray direction. If a holographic optical element (HOE) is encountered, it is a similarly simple
process to calculate the output ray direction and the change in optical phase across the element
(Murison and Noecker, 1993). The POINTS optical subsystems involve all three types of
optical surfaces. AESOP currently handles reflecting and holographic optical elements.
Refracting surfaces will be easy to add, due to the extensible structure of AESOP.

As simple as the physics is, such a ray tracing process is impossible to do analytically by hand
(especially the aperture-averaged effects). The inhibiting factor is the rapidly increasing (with
each successive optical surface) complexity of the intermediate expressions that must be
algebraically manipulated. This kind of repetitive manipulation of unwieldy objects is
precisely what computers can do well. Hence, a programmable computer algebra system like
Maple is well suited in principle to analyzing misaligned optical systems, at least simple ones
involving relatively few focussing optical surfaces.

In section 2, a few mathematical topics relevant to this kind of ray tracing in general and to
AESOP in particular are briefly reviewed. Most optical surfaces are conicoids, so quadric

surfaces and their normal vectors are introduced in section 2.1. Section 2.2 introduces the
concepts of optical rays, ray bundles, and wavefronts. Sections 2.3 and 2.4 explain the methods
used by AESOP to determine the intersection of a ray with an optical surface and calculate the
exit ray direction. Section 2.5 covers the averaging of wavefront error over the aperture of a
centrally obstructed optical system (common in astronomical systems). Section 2.6 introduces
the expansion of a perturbed wavefront in a Zernike series, the low-order components of which
correspond to the classical wavefront aberrations such as coma, astigmatism, etc. The Zernike
series representation of a wavefront is extremely convenient, instructive, and a helpful aid in
the analysis of perturbed optical systems (as we shall see in Appendix B).

Assuming the background material in section 2, section 3 covers the AESOP design approach.
Optical systems and geometric ray tracing lend themselves naturally to an object-oriented
design, which AESOP takes full advantage of. Indeed, many design simplifications result,
helping to make analytical ray tracing not only feasible but extensible as well. In practice, it
has proven easy to extend AESOP capabilities as new ones are needed, though one does have to
be careful to enforce the encapsulation structure of the AESOP objects, since the Maple
language is not itself object oriented. Finally, section 3.2 gives an overview of the AESOP ray
tracing process. Appendix A contains a calculation of the unit normal vector for quadric
surfaces. Appendix B is an excerpt of a Maple session in which a misaligned beam compressor
is analyzed by AESOP. Appendix C contains code fragments that illustrate how to use
AESOP.

2. Mathematical Considerations.

2.1 Quadric Surfaces.

2.1.1 Surface Families.
A general conicoid, or quadric surface, has the form

 = ()s ρ
ρ2

 + 2 f − 4 f2 ε ρ2

where ρ is the perpendicular distance from the axis of symmetry, f is the focal length at
the vertex, and ε is the conic constant. The quadric surface types as a function of ε are:
 ε = 0 paraboloid of focal length f
 ε = 1 spheroid of radius 2 f
 ε < 0 hyperboloid
 0 < ε < 1 prolate spheroid
 ε > 1 oblate spheroid

The eccentricity of a prolate spheroid is = e
 − 1 ε
ε

, and that of an oblate spheroid is

 = e
 − ε 1
ε

. Commonly, the conic constant is referred to by = k − ε 1 so that = k 0

refers to a spheroid. The quantity used here is more convenient for our purposes, since
the paraboloid is the most frequently encountered focussing surface in astronomical
optics. For small values of ρ we have
> assume(f>0):
> sag := rho^2 / (2*f + sqrt(4*f^2 - epsilon*rho^2)):
> s(rho) = series(sag, rho, 7);

 = ()s ρ + + +
1
4

1
f

ρ2 1
64

ε

f3
ρ4 1

512
ε2

f5
ρ6 ()O ρ8

The leading term we recognize as the sagitta of a paraboloid. All conicoids are
paraboloidal at second order. Hence, all conicoids exhibit arbitrarily good focussing of
a sufficiently narrow, on-axis input wavefront. The first aberrational term is spherical
aberration, which enters in with a linear term at fourth order in radius. We see that
wavefront aberrations are a function of conicoid family type.

2.1.2 The Surface Normal Vector.

The vector grad s is the projection onto the xy plane (= ρ + x2 y2) of a vector which
is normal to the convex side of the surface s. Define the surface function

 = ()g , ,x y z − z ()s ,x y . Then

 = N
()grad g
()grad g

 =







, ,−







∂

∂
x

s −






∂

∂
y

s 1

()grad g

is a unit vector normal to the surface on the concave side. Calculation of the surface
normal vector is the crucial step in determining the output direction of a ray incident on
an optical surface. As shown in Appendix A, we have a relatively simple result for
conicoids:

 = N












, ,−

x

 + () − 1 ε ρ2 4 f2
−

y

 + () − 1 ε ρ2 4 f2

 − 4 f2 ε ρ2

 + () − 1 ε ρ2 4 f2

2.2 Rays, Ray Bundles, and Wavefronts.
In the geometric optics regime, we may develop the concept of a wavefront W as follows.
Consider an infinitely narrow beam, or ray, r, defined by an anchor point p, a point in
space from which the ray originates; a propagation direction v, conveniently but not
necessarily represented as a unit vector; and an optical path length (OPL) t, defined as the
index of refraction n of the propagation medium integrated over a distance L from p along v

: = t d⌠
⌡
0

L
()n l l. Hence, we may write = r + p t v.

A wavefront may be viewed as a surface W in R3 of constant optical phase propagating
through space (or through an optical medium). An infinitesimally small neighborhood
U ε W of each point propagates in a direction ()v p that is normal to W at p. We can
therefore associate a ray with each point of W. We define a ray bundle as the set of rays
belonging to W. A concave wavefront (or portion of a wavefront) produces a converging
ray bundle, and a convex wavefront produces a diverging ray bundle.

In an analytical ray tracing procedure, one can consider a single ray that is transformed by
passage through an optical system. The resulting output ray then strikes a detector surface.
The position on the detector of the output ray intersection point, the output ray direction,
and the total OPL (the optical path from the incident ray anchor point to the detector
surface) are all functions of the input ray anchor point and direction. Taking the input ray
anchor point position as lying on an incident wavefront (a function we can represent
analytically, usually a plane), we can construct a corresponding output wavefront from the
ray trace of the input ray.

2.3 Surface Intersection Point.
Given a ray propagating toward an optical surface, we must find the intersection point of
the ray with the element surface. Define the surface local coordinate frame with origin at
the surface vertex and Z axis along the vertex normal. An equation for an input ray
parameterized by optical path t is
 = ()r t + r0 t v

where = r0 [], ,x0 y0 z0 is the ray anchor point and v is the unit direction vector

 = v [], ,sin ψ cos λ sin ψ sin λ cos ψ = [], ,vx vy vz

where (,ψ λ) are the polar and azimuthal angles with respect to the +Z axis and
counterclockwise from the +X axis in the local coordinate frame, respectively. The
equation of the surface -- the sagitta -- in the local coordinate frame is of the form
 = ()g , ,x y z − z ()s .x y = 0
We can find the value of t which corresponds to the intersection point (x,y,z) by
substituting
 = x + x0 t sin ψ cos λ = + x0 t vx
 = y + y0 t sin ψ sin λ = + y0 t vy
 = z + z0 t cos ψ = + z0 t vz
into the scalar equation ()g , ,x y z and solving for t. For a (perhaps perturbed) quadric
surface there will in general be two solutions. AESOP automatically chooses the correct
solution. Then we substitute the solution for t back into the equations for the ray,

 = ()r t + r0 t v

to determine the x, y, and z values of the intersection point.

2.4 Exit Ray Direction.
Upon encountering an optical surface, a ray must know how to interact with that surface
and choose an output direction. After the intersection point is found, we determine the unit
normal vector at that point, thus providing a local reference for measuring input and output
angles.

2.4.1 Reflection.
For a reflecting surface, the incident and reflecting angles are equal. The reflected
beam lies in the plane defined by the incident beam and the normal to the surface at the
intersection point. Thus, we can write the reflected ray direction as being equal to the
incident ray direction plus a component along the surface normal vector direction,
 = vr + vi α N

where subscripts r and i correspond to the reflected and incident rays, respectively, N is
the normal to the surface at the intersection point, and α is a scale factor that must be
determined. Since the incident and reflected angles are equal, we have

 =
()dot ,N vr

N vr
−

()dot ,N vi
N vi

Combine this with

 = ()dot ,N vr + ()dot ,N vi α N 2

and the further condition that the magnitude of the reflected beam is equal to the
magnitude of the incident beam (certainly true if v

i
 and v

r
 are unit vectors), and we can

solve for α:

 = α −
2 ()dot ,N vi

N 2

After vr is determined, the result is then transformed back to the global reference frame

for propagation of the ray to the next optical surface.

2.4.2 Refraction.
For a refracting surface, we must use Snell's law, which leads to more complications
than the simple law of reflection. As in the reflecting case, we may write
 = v

r
 + v

i
α N

where the subscript r is associated with the refracted ray. But now we have the
condition
 = ni sin θi nr sin θr

where ni and nr are the indices of refraction and θi and θr are the corresponding angles

of incidence and refraction. Using = ()dot ,N vr + ()dot ,N vi α N 2 , the condition

 = v
r

v
i

 , and Snell's law, we find that the scale factor is

 = α

vi












 − − 1













ni
nr

2
sin2 θi cos θi

N

where θi is determined from the incident beam direction via

 = cos θi

()dot ,N vi
N vi

2.4.3 HOE Diffraction.

2.4.3.1 Direction of the Diffracted Ray.
An adequate description of ray tracing across a holographic optical element (HOE)
is beyond the scope of this paper. However, it is part of AESOP's current
capabilities, so I present the relevant equations here, without motivation or proof.
HOE ray tracing is mostly neglected in the standard optics texts, with the exception
of Welford (1986). Even in the latter, the account is incomplete, cursory, and
potentially misleading. The reader is referred instead to Murison and Noecker
(1993) for a complete and accurate development.

Define the quantity = T 1 for transmission (i.e., the incident ray passes through the
HOE), and = T −1 for reflection (for example a diffraction grating ruled on the
surface of a mirror). Then let us define
 = S T ()sign ()dot ,N vi

where N is now the unit normal vector at the surface intersection point, and vi is the

incident beam direction of propagation (also now required to be a unit vector).
Additionally, define the auxiliary vector

 = u − ()cross ,N vi

m λ ()cross ,N − kc1
kc2

λ
c

where m is the diffraction order (an integer), λ is the readout wavelength (i.e.,
wavelength of the incident wavefront), λc is the HOE construction wavelength, and

kc1
 and kc2

 are related to the unit vectors directed from the HOE construction

points to the surface intersection point. If ,v1 v2 are those unit vectors, then

 = kc1
V1 v1 and = kc2

V2 v2, where = Vk 1 (k=1,2) if the construction point Ck is a

real focus and = V
k

−1 if the construction point C
k
 is a virtual focus. Then the

diffracted ray direction, a unit vector, is given by

 = vr − S − 1 u2 N ()cross ,N u

2.4.3.2 Optical Path Correction.
In geometrical ray tracing of a HOE, a correction must be added to the optical path
upon traversing the HOE surface. Again, refer to Murison and Noecker (1993) for
a detailed development. The corrected optical path is
 = L − ()L0 p ∆ ()L p

where ()L0 p is the optical path to the surface intersection point p as calculated in

the normal geometric way, and

 = ∆ ()L p
m λ () − ()D p ()D p0

λc

is the phase correction. p0 is an arbitrary reference point; for a conicoid, a good

choice is the location of the surface vertex. [The location of p0 can be arbitrary

since it introduces a constant offset in the optical path. We are only interested in
optical path differences (or variations).] The distance function D is a function of
the HOE construction points and is given by the expression
 = ()D p − V1 ()v1 p V2 ()v2 p

2.5 OPD Averaged over an Annular Aperture.
One may define the optical path difference (OPD) as the difference in total optical path
through a system, starting from an initial ray anchor position (,ρ φ), minus the total optical
path of an axial ray through the unperturbed system (the fiducial, or chief, ray). The output
wavefront is then conveniently represented by the OPD. Frequently, we have need of the
OPD averaged over the beam aperture. Generally, there is a central (usually circular)
obscuration, for example the secondary mirror in a telescope. Hence the OPD averaged
over an annular input beam of inner and outer radii a and b is

 = OPDavg

d⌠
⌡
a

b
d⌠

⌡
0

2 π
ρ ()OPD ,ρ φ φ ρ

π () − b2 a2

Once the OPD is determined by tracing a ray through the system (and subtracting the
fiducial ray optical path), the averaging integral is easy to perform. The procedure

annular_average() is the AESOP function that does this.

2.6 Expansion of the Wavefront in a Zernike Series.
Zernike circle polynomials are a complete orthogonal set over the interior of the unit circle.
Hence an arbitrary function ()W ,ρ φ , where ρ is restricted to the range [0,1], may be
completely represented by an infinite series of Zernike polynomials. We may write

 = ()W ,ρ φ ∑
 = n 0

∞ 









∑
 = m 0

∞
() + A ,n m ()U ,n m ,ρ φ B ,n m ()V ,n m ,ρ φ

where the values of m are restricted to = − n m even, A and B are coefficients, and U and V
are given by
 = ()U ,n m ,ρ φ ()R ,n m ρ ()cos m φ

 = ()V
,n m

,ρ φ ()R
,n m

ρ ()sin m φ

where the radial polynomials R are given by

 = ()R ,n m ρ ∑
 = k 0

 − n m
2 ()−1 k !() − n k ρ

() − n 2 k

!k !






 −

 + n m
2

k !






 −

 − n m
2

k

See Murison (1995) for a discussion, including determination of the coefficients and an
example using AESOP. [See also Born and Wolf (1980) and Zernike (1934) for more
background on Zernike polynomials.]

The Zernike series representation is useful for providing explicit expressions for the
well-known low-order wavefront aberrations such as coma, astigmatism, defocus, and so
on. This turns out to be an appealing way of converting the often large and inscrutable
AESOP wavefront expressions into tidy, intuitively understandable results. In general, the

 = m 1 terms correspond to coma, and the = m 2 terms correspond to astigmatism, with n
degrees of radial "rippliness". Hence, the classical aberrations are
 n=1, m=1 wavefront tilt
 n=2, m=0 defocus
 n=2, m=2 astigmatism
 n=3, m=1 coma
 n=4, m=0 spherical aberration
Another low-order, but non-classical, aberration that is sometimes important is the "trefoil"
term n=3, m=3. Zernike components of the wavefront are illustrated in the example shown
in Appendix B. Another advantage of a Zernike series representation is that each Zernike
term affects the variance independently. Hence, the Zernike polynomials
minimize the wavefront variance term by term.

3. AESOP Design Considerations.

3.1 An Object Oriented Approach.
Geometrical optics lends itself very naturally to an object-oriented approach when creating
computer programs, either numerical or algebraic. AESOP takes advantage of this by
defining useful objects as Maple table structures. These Maple tables contain, or
encapsulate, all of the information relevant to the corresponding objects. The Maple
procedures that constitute AESOP, and which the user uses to create a Maple procedure
which can analyze an optical system, manipulate these AESOP objects. Following is a list
of current AESOP objects with brief descriptions.

3.2 AESOP Objects.

3.2.1 Optical Surface Data Structure.
The optical system is comprised of AESOP optical elements. Each element type has a
corresponding procedure which, given certain information, creates the optical element
object. All AESOP optical elements share a common table structure. The table
element [eqn] contains the equation describing the optical element's surface shape
(usually, but not necessarily, a conicoid) in the surface local coordinate frame. The
local frame origin is located at the surface vertex, and the positive Z axis is coincident
with the vertex normal vector. The [dir] and [pos] elements contain, respectively, a
Maple vector and an AESOP point which describe the surface vertex normal vector
direction and the vertex position, both in the global reference frame. The [type]
element is the object identifier. Finally, the [coord] table element is a point which
contains the (, ,x y z) coordinate labels that the user wishes to appear in the [eqn]
expression. An example will make this clear:
> read`objects.p`:
> spheroid(f, point([a,b,c]),

 vector([d[u],d[v],d[w]]), [u,v,w]);

table([
 = coord [], ,u v w

 = eqn − + w 2 f − − 4 f2 u2 v2

 = dir [], ,du dv dw
 = pos [], ,a b c
 = type mirror

])
Usually, one uses (, ,x y z) for the coordinate labels.

3.2.2 AESOP Optical Surface Objects.
The current AESOP optical surface types are as follows. They all have the same Maple
table structure and, for the most part, differ only in the form of the equation describing
the surface. This assortment represents the surface types needed in analyzing POINTS;

other types are easy to add as need arises.

3.2.2.1 optical_flat.
The optical_flat is a mirror with infinite focal length. It is the simplest optical
surface.

3.2.2.2 conicoid.
The conicoid is a reflecting surface with a general conicoid shape which is a
function of the conic constant.
> pos := point([a,b,c]):
> dir := vector([v[x],v[y],v[z]]):
> conicoid(f, epsilon, pos, dir, [x,y,z]);

table([
 = coord [], ,x y z

 = eqn − z
 + x2 y2

 + 2 f − − 4 f2 ε x2 ε y2

 = dir [], ,vx vy vz
 = pos [], ,a b c
 = type mirror

])

3.2.2.3 spheroid, paraboloid.
Because the equation for a quadric surface simplifies somewhat for the special
conic constant value = ε 1, a separate spheroid surface is available. Similarly, the
paraboloid is a conicoid with the special value = ε 0.

3.2.2.4 asphere.
The asphere object is one whose conicoidal surface is perturbed by a series of
radial ripples. AESOP employs a general asphere model of the form

 = ()s ρ +
ρ2

 + 2 f − 4 f2 ε ρ2











∑
 = k 1

∞
Ak ρk

which is a conicoid plus a radial power series. The AESOP generating function for
this is asphere(). Here is an illustrative example:
> clist := [seq(A[i], i=1..4)]:
> asphere(f, epsilon, clist, pos, dir, [x,y,z]);

table([
 = coord [], ,x y z

eqn z
 + x2 y2

 + 2 f − − 4 f2 ε x2 ε y2
A1 + x2 y2 A2 () + x2 y2 − + + =

A3 () + x2 y2
 / 3 2

A4 () + x2 y2
2

 + +

 = dir [], ,vx vy vz
 = pos [], ,a b c
 = type mirror

])

3.2.2.5 pHOE.
The procedure pHOE() creates a simple focussing HOE on a paraboloidal mirror
of focal length f. It is assumed that one of the construction points, say C2, is

virtual, so that a beam starting from the other construction point, C1, will diffract

to a focus at C2. Further restrictions are that the diffraction order = m 1, and the

readout wavelength is equal to the construction wavelength. C1 and C2 must be

specified in the surface local frame.

3.2.2.6 beam_splitter.
This is identical to the optical_flat object except for the identification tag. The
beam_splitter object exists solely for human convenience and program readability.

3.2.2.7 lens.
Currently, lenses are unimplemented. Declaration of a lens will produce an error
message.

3.2.3 Miscellaneous Objects.

point
An AESOP point is identical in most respects to a Maple vector. It's main purpose
is to support the conceptual distinction between a direction vector and a position
(point) in space. The AESOP point object, though, is restricted to three elements.
Otherwise, it is equivalent to a Maple vector with three elements and is recognized
by Maple as such. There is a corresponding `type/point` function so that the Maple
type procedures (such as is(), hastype(), etc.) will recognize the AESOP point.

beam
A beam object is a Maple table that has four elements. The first two elements
consist of an AESOP point [pos], which contains the beam (or ray) anchor

position, and a Maple vector [dir], which contains the ray propagation direction
vector. Next is a scalar element [path] for storing the expression corresponding to
the accumulated optical path. Finally, a beam contains an identifier ['type'] :=
'beam', which procedures may query to check that the object is a beam. An
associated type() function makes the Maple type procedures aware of beams. It is
a beam object which serves as the optical ray being propagated through an optical
system.

3.3 How AESOP Does Ray Tracing.
An overview of the ray tracing process using AESOP is as follows.

(1) In a Maple procedure that the user writes, the user first defines the various optical
elements comprising the optical system. These surfaces are assembled into a Maple list
which AESOP routines will make use of. Perturbations (misalignments) are applied in the
form of rotations and/or translations of specified optical elements. AESOP provides object
rotation and translation procedures to make this a simple process.

(2) The user then defines the input ray, which is subsequently launched into the optical
system by calling the AESOP procedure raytrace(). An example of the essential elements
of a typical user-written driver procedure is reproduced in Appendix C. AESOP then
automatically traces the ray to each successive optical element, performing series
expansions on the perturbation parameter(s) as necessary and simplifying the cumbersome
expressions as as much as possible, until finally an output ray is produced at the detector.
Progress during this process is communicated via informational messages and key
intermediate expressions to the monitor screen. If nothing else, there is plenty of stuff the
user can peruse while waiting for the ray trace to finish, since AESOP is intentionally a bit
chatty.

(3) The OPD is then calculated from the output ray expressions, followed by calculation of
the aperture-averaged OPD.

(4) Optionally, the Zernike components of the OPD are determined next, either at the
Maple prompt or from within the user's driver procedure. The resulting Zernike
coefficients may then be combined to produce wavefront aberration plots. The aberrated
wavefronts are represented by 3D Maple surface plots. Maple procedures are supplied for
making the wavefront plots in the Maple worksheet.

An illustrative example of this entire process for a simple beam compressor is shown in
Appendix B.

In practice, the essential step for useful analytical ray tracing is to make series expansions
at each intersection of a ray with an optical surface. (The original insight for this trick is
due to R.D. Reasenberg.) This reduces the "equation bloat" considerably. Even so, it is

still rather easy to cause the intermediate expressions to mushroom in size so that they
overwhelm the available machine resources. The equation bloat seems to go as some
power of the number of focussing optical elements in a system. Flat surfaces certainly
contribute to increasing equation complexity, but at a rate that pales in comparison to that
of focussing surfaces.

Since we are interested in analyzing optical systems whose elements are slightly
misaligned, the small parameters to perform the series expansion on are naturally the
misalignment perturbations. Hence, AESOP is not meant to analyze the very interesting
properties of ideal, perfectly aligned optical systems. It requires at least one misalignment
or other perturbation parameter.

For a given optical system, a certain amount (sometimes a great amount) of tinkering on the
part of the user is required to hit upon the best ways of simplifying the cumbersome
expressions so that their size is managable. Great care has been made in the types of
simplification taking place in the AESOP ray tracing routines. However, they are no doubt
optimized for the particular systems the author has analyzed and will therefore perhaps be
less than optimum for other kinds of optical systems. Hence, AESOP is nowhere near the
"black box" stage, where a user can provide necessary input, crank the handle, and
magically produce an answer without caring overmuch about the internals of the black box.
Nonetheless, AESOP can be quite useful and represents a significant advance in capability
for analyzing perturbed optical systems and performing misalignment sensitivity studies. It
also serves as an invaluable check on numerical programs as well as an essential aid to
developing reliable insight into the arcane and beautiful world of high-precision optics.

4. Availability.
The AESOP source code, help files, examples, background papers, and other information may
be found at the web site http://riemann.usno.navy.mil/AESOP/.

5. References.
Note: copies of relevant Smithsonian Astrophysical Observatory (SAO) Technical Memoranda
may be obtained from the author. They are also available at
http://riemann.usno.navy.mil/AESOP/.

Born, M., and Wolf, E. (1980). Principles of Optics, sixth edition, Pergammon, section 9.2.

Lindegren, L., and Perryman, M.A.C. (1996). "GAIA: Global Astrometric Interferometer for
Astrophysics", Astron. and Astrophys. Supp. 116, 579.

Loiseau, S. (1996). "Global Astrometry with OSI",
Astron. and Astrophys. Supp. 116, 373.

Murison, M.A. (1993). "Ray Trace Analyses of Selected POINTS Optical Subsystems", SAO
Technical Memorandum TM93-08.

Murison, M.A. (1995). "Expansion of Wavefront Errors in an Infinite Series of Zernike
Polynomials", SAO Technical Memorandum TM95-04.

Murison, M.A., and Noecker, M.C. (1993). "Ray Tracing of and Optical Path across a
Holographic Optical Element", SAO Technical Memorandum TM93-04.

Noecker, M.C., Murison, M.A., and Reasenberg, R.D. (1993). "Optic-misalignment tolerances
for the POINTS interferometers", Proceedings of the SPIE - The International Society for
Optical Engineering, 1947, 218.

Reasenberg, R.D., Babcock, R.W., Chandler, J.F., Gorenstein, M.V., Huchra, J.P., Pearlman,
M.R., Shapiro, I.I., Taylor, R.S., Bender, P., Buffington, A., Carney, B., Hughes, J.A.,
Johnston, K.J., Jones, B.F., and Matson, L.E. (1988). "Microarcsecond optical astrometry - An
instrument and its astrophysical applications", Astron. J. 96, 1731.

Reasenberg, R.D., Babcock, R.W., Murison, M.A., Noecker, M.C., Phillips, J.D., and
Schumaker, B.L. (1995a). "POINTS: The Instrument and its Mission," Proceedings of the
SPIE, Conference #2477 on Spaceborne Interferometry II (Orlando, FL, 17-20 April 1995).

Reasenberg, R.D., Babcock, R.W., Murison, M.A., Noecker, M.C., Phillips, J.D., Schumaker,
B.L., Ulvestad, J.S., McKinley, W., Zielinski, R.J., and Lillie, C.F. (1995b). "", Bull. American
Astron. Soc., 187, #71.04.

R.D. Reasenberg, R.W. Babcock, M.A. Murison, M.C. Noecker, J.D. Phillips, B.L. Schumaker,
J.S. Ulvestad, W. McKinley, R.J. Zielinski, and C.F. Lillie (1996). "POINTS: High
Astrometric Capacity at Modest Cost via Focused Design," Proceedings of the SPIE,
Conference #2807 on Space Telescopes and Instrumentation IV (Denver, CO, 6-7 August
1996), in press.

Welford, W.T. (1986). Aberrations of Optical Systems , Adam Hilger, Boston.

Zernike, F. (1934). Physica 1, 689.

6. Biography.
Marc A. Murison is an Astronomer at the U.S. Naval Observatory, in Washington, DC. He
obtained his Ph.D. in Astronomy at the University of Wisconsin-Madison in 1988. He held a
postdoctoral position with the Hubble Space Telescope Wide Field/Planetary Camera team.
Subsequently, he was a Physicist at the Smithsonian Astrophysical Observatory where, among

other things, he was part of the effort in analyzing the optical systems of the proposed
astrometric interferometer satellite, POINTS. He currently is part of an effort by the Naval
Observatory to build its own astrometric satellite. His research interests include the chaotic
dynamics of the asteroid belt, high-precision solar system ephemerides, and ultra-high precision
analysis of optical systems.

Appendix A: The Unit Normal Vector of a Quadric
Surface.
> read`utils.p`:
The sagitta is
> sag;

ρ2

 + 2 f − 4 f2 ε ρ2

First, make some assumptions on the variables that we'll use:
> assume(epsilon,real): assume(rho >= 0): assume(Q>0):
Convert the sagitta to a function of (x,y).
> sagxy := subs(rho=sqrt(x^2+y^2),sag):
Then take the gradient and collect on ε.
> map(collect, grad(z-sagxy,[x,y,z]), [epsilon]):
Now replace x and y with ρ, where convenient. We get the resulting gradient vector
> g := map(collect, subs(x^2+y^2=rho^2,"), [x,y,z]);

 := g











, ,












− −

2
%1

ρ2 ε

%12 − 4 f2 ε ρ2
x












− −

2
%1

ρ2 ε

%12 − 4 f2 ε ρ2
y 1

 := %1 + 2 f − 4 f2 ε ρ2

Now that we have the gradient term, form the unit normal vector.
> v := array([-diff(sagxy,x), -diff(sagxy,y), 1]):
> subs(x^2+y^2=rho^2, evalm(v / mag(g))):
> N := map(collect, ", [epsilon,x,y]);

N − −
ρ2 x ε

 + + 1 %22 x2 %22 y2 %12 − 4 f2 ε ρ2
2

x

 + + 1 %22 x2 %22 y2 %1
,








 :=

− −
ρ2 y ε

 + + 1 %22 x2 %22 y2 %12 − 4 f2 ε ρ2
2

y

 + + 1 %22 x2 %22 y2 %1
,

1

 + + 1 %22 x2 %22 y2







 := %1 + 2 f − 4 f2 ε ρ2

 := %2 − −
2

%1
ρ2 ε

%12 − 4 f2 ε ρ2

where mag() is a function which returns the magnitude of a vector. This expression can be

simplified considerably. Let's get rid of the x2 and y2 terms and substitute Q2 for − 4 f2 ε ρ2.
> map(simplify, N, { x^2+y^2=rho^2, 4*f^2-epsilon*rho^2=Q^2 }, [x,y,f]

):
Simplifying again, we get the pleasing result
> map(simplify, ");












, ,−

x

 + ρ2 Q2
−

y

 + ρ2 Q2

Q

 + ρ2 Q2

That is, we have
> N := subs(Q=sqrt(4*f^2-epsilon*rho^2), "):
> N := rootfunc(collect, N, rho);

 := N












, ,−

x

 + () − 1 ε ρ2 4 f2
−

y

 + () − 1 ε ρ2 4 f2

 − 4 f2 ε ρ2

 + () − 1 ε ρ2 4 f2

(The procedure rootfunc() applies an arbitrary procedure to an expression which contains
subexpressions raised to fractional powers. Now, the Maple procedure collect() allows one to
collect on a set of variables and apply a function to the coefficients of those variables, but it
unfortunately ignores expressions raised to fractional powers. rootfunc() also automatically
processes the components of vectors and lists. It is a handy function for easy manipulation of
expressions under radicals.)

Appendix B: A Sample AESOP Run.

B.1 OPD Calculation.
Following is a Maple session in which AESOP is used to calculate the aberrated wavefront
of a misaligned beam compressor. The primary mirror has focal length f, and the beam
compression ratio is denoted by C. The perturbation consists of a rotation of the primary
mirror about its vertex by an angle θ. The detector surface (a plane) is located a distance d
below the primary mirror surface. The drive procedure, in which the optical system is
defined and AESOP ray tracing invoked, is called BeamComp(). Appendix C lists an
excerpt of BeamComp() which contains the most important parts of the procedure. It is

illustrative of how easy it can be to analyze a simple system. The first argument of
BeamComp() is the perturbation type, in this case the primary mirror rotation. The third
and fourth arguments are the order of the expansions in θ and in radius. Since the AESOP
informational output is extensive, it is not shown here.
> read`BeamCompressor.p`;
#===#
AESOP #
(An Extensible Symbolic Optics Processor) #
#===#
Marc A. Murison #
U.S. Naval Observatory #
Astronomical Applications Dept. #
murison@riemann.usno.navy.mil #
#===#
> BeamComp(ROT_PRIMARY,theta,3,12);
[...much output deleted...]
BeamComp [364]: Done!
This run took 364 seconds on a 100 MHz Pentium machine with 32 MB of RAM available.
Peak memory usage, as reported by the Maple status bar, was 9.8 MB. The wavefront and
the aperture-averaged wavefront, which are the main results (and which are too bulky to
reproduce here), are stored in the global variables OPD and OPD_avg.

B.2 Zernike Series Decomposition of the Wavefront.
In this section we perform a Zernike series analysis of the wavefront (OPD) just calculated.
First, we set the compression ratio to 10, the distance to the detector to 20 cm, and
normalize ρ so that it spans the interval [0,1] and now R represents the radius of the input
beam. The OPD then simplifies to
> opd := subs(rho=R*rho, C=10, d=20,

 collect(OPD, [theta,cos(phi),sin(phi),rho], simplify
));

opd
1

1024
() + 10740000 446801 f R11 ρ11

f11
1

256
() + 5112000 215559 f R9 ρ9

f9
 −












 :=

1
32

() + 1034000 44839 f R7 ρ7

f7
1
8

() + 334000 14659 f R5 ρ5

f5
 + −

1
4

() + 140000 6279 f R3 ρ3

f3
 +






()cos φ 3 1

122880
() + 210360000 8678927 f R11 ρ11

f11






 +

1
30720

() + 138960000 5779097 f R9 ρ9

f9
1

384
() + 4266000 179791 f R7 ρ7

f7
 − +

1
192

() + 4704000 200159 f R5 ρ5

f5
1
24

() + 1086000 46621 f R3 ρ3

f3
 − +

1
3

() + 198000 8821 f R ρ
f

 −





()cos φ






θ3 1

2048
() + 124000 5294 f R12 ρ12

f12












 +

1
512

() + 80000 3473 f R10 ρ10

f10
1
64

() + 24000 1071 f R8 ρ8

f8
 − +

1
32

() + 26000 1181 f R6 ρ6

f6
5
2

() + 600 28 f R4 ρ4

f4
1
2

() + 4000 199 f R2 ρ2

f2
 − + −








()cos φ 2 5
4096

() + 1800 74 f R12 ρ12

f12
5

512
() + 800 33 f R10 ρ10

f10
 + −

5
256

() + 1400 58 f R8 ρ8

f8
5

32
() + 600 25 f R6 ρ6

f6
5

16
() + 1000 42 f R4 ρ4

f4
 + − +

1
4

() + 4000 161 f R2 ρ2

f2
198 f 4000 − + +






θ2 +












− + − + − +

1
1024

R11 ρ11

f10
1

256
R9 ρ9

f8
1

64
R7 ρ7

f6
1

16
R5 ρ5

f4
1
4

R3 ρ3

f2
2 R ρ ()cos φ θ

Now we read the AESOP Zernike series routines and perform the series expansion on the
OPD to the same order in radius that the ray trace calculation used. The procedure
ZernikeSeries() automatically calculates all nonzero Zernike series coefficients, up to and
including the order specified. I have clipped the output, due to space constraints.
> read`zseries.p`:
> ZernikeSeries(opd,12,[theta],ON);
[...output deleted...]
The Zernike series coefficients are now in a globally accessible table called c, and the
Zernike wavefront representation is stored in the global variable S. Determination of the
Zernike series coefficients is a time-consuming process (this particular example took ~11
minutes), but it is not memory intensive like the ray tracing process. To show an example,
the classical coma term is
> ZernikeTerm(3,1,c);

1
5160960

R3 1611482048 R6 f3 38338560000 R6 f2 115218432000 R2 f6− − − (






123002880000 f8 72963072000 R4 f4 3136046592 R4 f5 4989153792 R2 f7 + + + −

5367147520 f9 17654400000 R8 733365255 R8 f + + +) θ3 f11

1
215040

R3 () + − − + 75 R8 17920 f8 5376 R2 f6 320 R6 f2 1344 R4 f4 θ

f10
 −







() − 3 ρ3 2 ρ ()cos φ
We see that it has a first-order term in θ (other aberrations begin at second order in θ).
Hence, we expect coma to be an important aberration resulting from rotational
misalignment of the primary mirror. (In fact, for this particular example, it turns out that
all of the coma terms [3,1], [5,1], [7,1], etc. are first order in the perturbation, while the
other aberrations are second or third order in the perturbation. Hence, coma is by far the
dominant aberration after wavefront tilt, as we shall see below.)

We now subtract the original OPD from the Zernike series representation to check that the
two are indeed equivalent.
> factor(expand(S-opd));

0
This is reassuring! We see by calculating the "cost" of each that the Zernike series
representation contains quite a few more terms than the heavily simplified (in the Maple
sense) expression for OPD.
> cost(S);

 + + + 251 additions 2433 multiplications 30 divisions 17 functions
> cost(opd);

 + + + 53 additions 599 multiplications 28 divisions 4 functions

B.3 Analysis of the Wavefront Aberrations.

Now comes the fun part. We will read in, among others, the Zernike plotting function,
PlotZernikeWavefront() . This Maple procedure produces a color 3D Maple surface plot
of the residual wavefront after the specified Zernike terms have been subtracted. Hence, it
is a useful visual and quantitative tool for determining what are the important aberrations
for the particular system and misalignment under study. Typically, one takes a look at a
plot of the wavefront, from which the aberration with the largest magnitude is usually
apparent. One then subtracts the Zernike term(s) corresponding to that aberration and
views the resulting residual wavefront, from which the next most important aberration is
now apparent. This process is repeated as desired, resulting in a series of 3D plots showing
all of the important aberrations. In our example here, we use a primary mirror focal length
of 100 cm and an input beam radius of 10 cm, which sets the output beam radius at 1 cm
since we have previously taken the compression ratio to be 10. For this session, a
perturbation magnitude of 0.2 arc second (~1 microradian) of primary mirror rotation is

specified. Changing the perturbation magnitude only changes the scale of the aberrations
and not their relative importance, as long as we remain in the regime that is valid within the
expansion orders used.
> read`plotting.p`:
For the first plot, we subtract the average wavefront. The resulting wavefront residual is
> verbosity := 0:
> PlotZernikeWavefront(opd, theta, c, [[0,0]],

 `microns`, evalf(0.2*arcsec), 100.0, 10.0,
orientation=[-70,65]);

OPD

radius (cm)

Wavefront Error (microns)

(The fifth argument is a string which sets the physical units of the plot, in this case
microns.) The plot represents a mapping between the input beam coordinates (XY plane)
and the output wavefront (OPD). Divide the horizontal scale by the compression factor (

 = C 10 in this case) to get output beam coordinates. We recognize that the primary
aberration is, as expected, wavefront tilt, to the tune of about 1.5 microns at the edge of the
beam. Hence, let us additionally remove the tilt term:
> PlotZernikeWavefront(opd, theta, c, [[0,0],[1,1]],

 `microns`, evalf(0.2*arcsec), 100.0, 10.0);

OPD

radius (cm)

Wavefront Error (microns)

The primary aberration is now ~0.2 microns of coma. All of the coma terms are first order
in the rotation angle θ, and therefore dominant. Let us then additionally subtract all orders
of coma:
> PlotZernikeWavefront(opd, theta, c,

 [[0,0],[1,1],[3,1],[5,1],[7,1],[9,1],[11,1]],
 `pm`, evalf(0.2*arcsec), 100.0, 10.0);

OPD

radius (cm)

Wavefront Error (pm)

The residuals now consist of a ~100 picometer mix of defocus and astigmatism, which both
are quadratic in radius. By removing all of the first order (in θ) terms, we see that the
second order terms result in aberrations that are over 2,000 times smaller. Similar to the
series of coma terms, whose higher-order (in radius) components were of similar magnitude
to the classical third order coma term [3,1], the defocus and astigmatism terms of various
radial orders contribute comparable amounts to the aberrations as the classical components
[2,0] and [2,2], respectively. Hence, let us additionally remove all defocus and astigmatism
terms to get
> PlotZernikeWavefront(opd, theta, c,

 [[0,0],[1,1],[3,1],[5,1],[7,1],[9,1],[11,1],[2,0],[2,2],[4,0],
 [4,2],[6,0],[6,2],[8,0],[8,2],[10,0],[10,2],[12,0],[12,2]],
 `fm`, evalf(0.2*arcsec), 100.0, 10.0);

OPD

radius (cm)

Wavefront Error (fm)

Now we recognize exceedingly small 0.2 fm residuals due to trefoil ([3,3], [5,3], etc.)
aberrations. These aberrations happen in this system to be third order in the perturbation
angle θ. For example,
> ZernikeTerm(3,3,c);

1
860160

R3 θ3 46914105 R8 f 1127700000 R8 2453760000 R6 f2 + − (

103468320 R6 f3 4632320000 R4 f4 200878720 R4 f5 7182336000 R2 f6 − + + −

315227136 R2 f7 7526400000 f8 337559040 f9 − + +) ρ3 ()cos 3 φ f11

B.4 Conclusion.
We have firmly (and simply!) established that this particular wavefront's dominant
aberrations are tilt and coma, followed at a much lower level by defocus and astigmatism.
Even more important, we have the dependence of each aberration type (as well as of the
aperture-averaged wavefront) on the perturbation parameter θ, allowing us to determine the
sensitivity of these aberrations to (in this case) rotation of the primary mirror. Hence, given

an error budget, one can easily determine tolerances for the perturbation magnitudes.

Appendix C: The Guts of BeamComp().

C.1 BeamComp()
Here is the BeamComp() fragment.
 #
 # setup and definitions
 #
 BeamComp_defs(pert_type, order_eps, order_r);
 #
 # Trace the input ray through the optical system.
 #
 outbeam := raytrace(beam0, surfaces, small_params1, order_eps,
 small_params2, order_r, param_list, nodenom_list,
 sublist, siderels, siderels_list, ON):
 #
 # chief ray path
 #
 L0 := z0 + 2*f*(C-1)/C + d:
 #
 # path length difference
 #
 OPD := collect(outbeam[path]-L0, param_list, simplify):
 OPD := simplify(subs(x0=rho*cos(phi), y0=rho*sin(phi), OPD)):
 OPD := collect(OPD, [epsilon, cos(phi), sin(phi)], factor):
 #
 # aperture averaged OPD
 #
 OPD_avg := annular_average(OPD, [rho,phi], a, b, [epsilon]):
 OPD_avg := collect(OPD_avg, epsilon, simplify):

C.2 BeamComp_defs()
Here is a fragment from BeamComp_defs(), showing the definitions of the optical
elements and system.
 #
 # make a list of parameters not allowed in a denominator
 #
 nodenom_list := [x0,y0,rho,epsilon]:
 #
 # Define the primary mirror.
 #

 primary := paraboloid(f, point([x0,0,0]), zaxis, [x,y,z]):
 primary := rotate_object(primary, point([x0,0,0]), yaxis, epsilon, ON):
 #
 # Define the secondary mirror.
 #
 secondary := paraboloid(f/C, point([x0,0,f*(C-1)/C]), zaxis, [x,y,z]):
 #
 # Define the detector surface.
 #
 detector := optical_flat(point([0, 0, -d]), zaxis, [x,y,z]):
 #
 # Store the surfaces in one structure.
 #
 surfaces[1] := copy(primary):
 surfaces[2] := copy(secondary):
 surfaces[3] := copy(detector):
 #
 # Define the incident beam.
 #
 beam0 := beam(point([x0, y0, z0]), vector([0, 0, -1])):

